PART-A

Answer ALL the questions

1. Deduce the dimensional formula for gravitational constant.
2. The Young's modulus of the material of the wire is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and its poission's ratio is 0.25 . Calculate its rigidity modulus.
3. A 4 m long aluminium wire whose radius is 1.5 mm is used to support a mass of 50 kg . What will be the elongation of the wire? (Young's modulus for aluminium is $7 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} ; \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
4. State any four postulates of the kinetic theory of gases.
5. Define root mean square velocity. Find the rms value of air at $-100^{\circ} \mathrm{C}$ and $1000^{\circ} \mathrm{C}$.
6. What are intensive and extensive variables?
7. Give the Classius statement of the second law of thermodynamics.
8. Why C_{T} is not defined just as C_{P} and C_{V} are defined?
9. What is internal mechanical irreversibility?

10 . What is meant by the equation of state?

PART-B

Answer any FOUR questions (4x7.5=30 marks)
11. a) Discuss the variation of acceleration due to gravity with attitude.
b) How far away from the earth does acceleration due to gravity become one percent of its value at the earth's surface?
12. Derive an expression for the depression of the free end of a cantilever loaded at its free end, when the weight of the cantilever is negligible.
13. Derive an expression for the coefficient of viscosity of a gas on the basis of kinetic theory of gases.
14. Obtain the Classius inequality relation of thermodynamics.
15. a) Derive Ehrenfest's equation for a second order phase transition.
b) Give two examples of second order phase transition.

PART-C

Answer any FOUR questions
($4 \times 12.5=50$ marks $)$
16. a) Determine the gravitational potential and gravitational field due to a spherical shell at a point outside the spherical shell.
b) The radius of the earth is $6.637 \times 10^{6} \mathrm{~m}$, its mean density is $5570 \mathrm{kgm}^{-3}$ and the gravitational constant $6.67 \times 10^{-11} \mathrm{~N} / \mathrm{m}^{2} \mathrm{~kg}^{-2}$.

Calculate the earth's surface potential.
17. a) Derive Poiseuille's formula for the rate of flow of liquid in a capillary tube.
b) Calculate the mass of water flowing in 10 minutes through a tube of 0.001 m diameter and 0.4 m long if there is a constant pressure head of 0.2 m of water. The coefficient of viscosity of water is $0.00082 \mathrm{Nsm}^{-2}$
18. Given the equation $\mathrm{F}(\mathrm{P}, \mathrm{V}, \mathrm{T})=0$, obtain the thermodynamic relation $(\partial \mathrm{P} / \partial \mathrm{V})_{\mathrm{T}}(\partial \mathrm{U} / \partial \mathrm{T})_{\mathrm{P}}(\partial \mathrm{T} / \partial \mathrm{P})_{\mathrm{V}}=-1$ and hence obtain a value for the coefficient of cubical expansion for a van der waal gas.
19. Explain Joule-Kelvin experiment and inversion curve. Obtain an expression for Joule-Kelvin coefficient.
20. a) Derive Maxwell's thermodynamical relations.
b) One kg of water at $7^{\circ} \mathrm{C}$ is mixed with 3 kg of water at a temperature of $47^{\circ} \mathrm{C}$ in a thermally insulated vessel. Find the change in entropy. $\left(\mathrm{C}_{\mathrm{P}}\right.$ of water $\left.=4180 \mathrm{~J} / \mathrm{Kg} / \mathrm{K}\right)$.

